
Effects of traumatic stress

raumatic stressors such as early trauma can lead
to post-traumatic stress disorder (PTSD), which affects
about 8% of Americans at some time in their lives,1 as
well as depression,2,3 substance abuse,1,4 dissociation,5 per-
sonality disorders,6,7 and health problems.8 For many
trauma victims, PTSD can be a lifelong problem.9 The
President’s New Freedom Commission Report highlights
the importance of providing services for mental disorders
related to early trauma.10-12 However, the development of
effective treatments is limited by gaps in knowledge
about the underlying neurobiological mechanisms that
mediate symptoms of trauma-related disorders like
PTSD.This paper reviews preclinical and clinical studies
on the effects of traumatic stress on the brain.

Normal development of the brain 
across the lifespan

To understand how traumatic stress occurring at differ-
ent stages of the life cycle interacts with the developing
brain, it is useful to review normal brain development.
The normal human brain undergoes changes in structure
and function across the lifespan from early childhood to
late life. Understanding these normal developmental
changes is critical for determining the difference between
normal development and pathology, and how normal
development and pathology interact.
Although the bulk of brain development occurs in utero,
the brain continues to develop after birth. In the first 5
years of life there is an overall expansion of brain volume
related to development of both gray matter and white
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Brain areas implicated in the stress response include the
amygdala, hippocampus, and prefrontal cortex.
Traumatic stress can be associated with lasting changes
in these brain areas. Traumatic stress is associated with
increased cortisol and norepinephrine responses to sub-
sequent stressors. Antidepressants have effects on the
hippocampus that counteract the effects of stress.
Findings from animal studies have been extended to
patients with post-traumatic stress disorder (PTSD)
showing smaller hippocampal and anterior cingulate
volumes, increased amygdala function, and decreased
medial prefrontal/anterior cingulate function. In addi-
tion, patients with PTSD show increased cortisol and
norepinephrine responses to stress. Treatments that are
efficacious for PTSD show a promotion of neurogenesis
in animal studies, as well as promotion of memory and
increased hippocampal volume in PTSD.
© 2006, LLS SAS Dialogues Clin Neurosci. 2006;8:445-461.



matter structures; however, from 7 to 17 years of age
there is a progressive increase in white matter (felt to be
related to ongoing myelination) and decrease in gray
matter (felt to be related to neuronal pruning) while
overall brain size stays the same.13-16 Gray matter areas
that undergo the greatest increases throughout this lat-
ter developmental epoch include frontal cortex and pari-
etal cortex.17,18 Basal ganglia decrease in size, while cor-
pus callosum,19,20 hippocampus, and amygdala21-23 appear
to increase in size during childhood, although there may
be developmental sex-laterality effects for some of these
structures.24 Overall brain size is 10% larger in boys than
girls during childhood.24

During the middle part of life (from age 20 to 70) there
is a gradual decrease in caudate,25 diencephalon,25 and
gray matter,25,26 which is most pronounced in the tempo-
ral27 and frontal cortex,26 with enlargement of the ventri-
cles26,27 and no change in white matter.25,26 Studies have not
been able to document changes in hippocampal volume
in normal populations during this period.27 After
menopause in women at about the age of 50, however,
there are changes in reproductive hormones, such as
decreased levels of estrogen. Since estrogen promotes
neuronal branching in brain areas such as the hip-
pocampus,28 a loss of estrogen may lead to changes in
neuronal structure. Although the effects of menopause
on the brain have not been well studied, it is known that
sex hormones also affect brain function and circuitry29;
therefore, the changes in sex hormones with menopause
will presumably affect brain function, as well as possibly
structure. There is some evidence in super-elderly indi-
viduals (age >70) for modest reductions in hippocampal
volume with late stages of aging.27,30 More robust findings

have included increased ventricular volume and reduc-
tion in gray matter, temporal lobe, and cerebellum vol-
umes with normal aging, that begins before the age of
70.25,27,31-33

Therefore, trauma at different stages in life will presum-
ably have different effects on brain development. The
few studies that have looked at this issue do suggest that
there are differences in the effects of trauma on neuro-
biology, depending on the stage of development at which
the trauma occurs. Studies in this area, however, have
been limited.

Neurobiology of PTSD

PTSD is characterized by specific symptoms, including
intrusive thoughts, hyperarousal, flashbacks, nightmares,
and sleep disturbances, changes in memory and concen-
tration, and startle responses. Symptoms of PTSD are
hypothesized to represent the behavioral manifestation
of stress-induced changes in brain structure and function.
Stress results in acute and chronic changes in neuro-
chemical systems and specific brain regions, which result
in long-term changes in brain “circuits,” involved in the
stress response.34-37 Brain regions that are felt to play an
important role in PTSD include hippocampus, amygdala,
and medial prefrontal cortex. Cortisol and norepineph-
rine are two neurochemical systems that are critical in
the stress response (Figure 1).
The corticotropin-releasing factor (CRF)/hypothalamic-
pituitary-adrenal (HPA) axis system plays an important
role in the stress response. CRF is released from the hypo-
thalamus, with stimulation of adrenocorticotropic hor-
mone (ACTH) release from the pituitary, resulting in glu-
cocorticoid (cortisol in man) release from the adrenal,
which in turn has a negative feedback effect on the axis at
the level of the pituitary, as well as central brain sites
including hypothalamus and hippocampus. Cortisol has a
number of effects which facilitate survival. In addition to
its role in triggering the HPA axis, CRF acts centrally to
mediate fear-related behaviors,38 and triggers other neu-
rochemical responses to stress, such as the noradrenergic
system via the brain stem locus coeruleus.39 Noradrenergic
neurons release transmitter throughout the brain; this is
associated with an increase in alerting and vigilance behav-
iors, critical for coping with acute threat.40-42

Studies in animals showed that early stress has lasting
effects on the HPA axis and norepinephrine. A variety
of early stressors resulted in increased glucocorticoid
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response to subsequent stressors.43-45 Maternally deprived
rats had decreased numbers of glucocorticoid receptors
in the hippocampus, hypothalamus, and frontal cortex.46

Stressed animals demonstrated an inability to terminate
the glucocorticoid response to stress,47,48 as well as deficits
in fast-feedback of glucocorticoids on the HPA axis,
which could be related to decreased glucocorticoid
receptor binding in the hippocampus.49 Early postnatal
adverse experiences increase hypothalamic CRF mes-
senger ribonucleic acid (mRNA), median eminence
CRF content, and stress-induced glucocorticoid50 and
ACTH release.46 These effects could be mediated by an
increase in synthesis of CRH mRNA following stress.51

In nonhuman primates, adverse early experiences
resulted in long-term effects on behaviors, as well as ele-
vated levels of CRF in the cerebrospinal fluid.52

Exposure to chronic stress results in potentiation of
noradrenergic responsiveness to subsequent stressors

and increased release of norepinephrine in the hip-
pocampus and other brain regions.42

Preclinical and clinical studies have shown alterations in
memory function following traumatic stress,53 as well as
changes in a circuit of brain areas, including hippocampus,
amygdala, and medial prefrontal cortex, that mediate alter-
ations in memory.54 The hippocampus, a brain area
involved in verbal declarative memory, is very sensitive to
the effects of stress. Stress in animals is associated with
damage to neurons in the CA3 region of the hippocampus
(which may be mediated by hypercortisolemia, decreased
brain-derived neurotrophic factor (BDNF), and/or ele-
vated glutamate levels) and inhibition of neurogenesis.55-60

High levels of glucocorticoids seen with stress were also
associated with deficits in new learning.61,62

Antidepressant treatments have been shown to block the
effects of stress and/or promote neurogenesis.58,63-66

Animal studies have demonstrated several agents with
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Figure 1. Lasting effects of trauma on the brain, showing long-term dysregulation of norepinephrine and cortisol systems, and vulnerable areas of hip-
pocampus, amygdala, and medial prefrontal cortex that are affected by trauma. GC, glucocorticoid; CRF, corticotropin-releasing factor; ACTH,
adrenocorticotropin hormone; NE, norepinephrine; HR, heart rate; BP, blood pressure; DA, dopamine; BZ, benzodiazapine; GC, glucocorticoid
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potentially beneficial effects on stress-induced hip-
pocampal damage. It has been found that phenytoin
blocks the effects of stress on the hippocampus, probably
through modulation of excitatory amino acid-induced
neurotoxicity.67 Other agents, including tianeptine, dihy-
droepiandosterone (DHEA), and fluoxetine have simi-
lar effects.63,64,66,68-73 These medications may share a com-
mon mechanism of action through upregulation of cyclic
adenosine monophosphate (cAMP) response element
binding protein (CREB) that may lead to regulation of
expression of specific target genes involved in structural
modeling of the hippocampus. Such treatment effects on
BDNF and trkB messenger ribonucleic acid (mRNA),
can have long-term effects on brain structure and func-
tion. There is new evidence that neurogenesis is neces-
sary for the behavioral effects of antidepressants,74,75

although this continues to be a source of debate.72,76

The hippocampus demonstrates an unusual capacity for
neuronal plasticity and regeneration. In addition to find-
ings noted above related to the negative effects of stress
on neurogenesis, it has recently been demonstrated that
changes in the environment, eg, social enrichment or learn-
ing, can modulate neurogenesis in the dentate gyrus of the
hippocampus, and slow the normal age-related decline in
neurogenesis.77,78 Rat pups that are handled frequently
within the first few weeks of life (picking them up and then
returning them to their mother) had increased type II glu-
cocorticoid receptor binding which persisted throughout
life, with increased feedback sensitivity to glucocorticoids,
and reduced glucocorticoid-mediated hippocampal dam-
age in later life.79 These effects appear to be due to a type
of “stress inoculation” from the mothers' repeated licking
of the handled pups.80 Considered together, these findings
suggest that early in the postnatal period there is a natu-
rally occurring brain plasticity in key neural systems that
may “program” an organism’s biological response to
stressful stimuli.These findings may have implications for
victims of childhood abuse.
Long-term dysregulation of the HPA axis is associated
with PTSD, with low levels of cortisol found in chronic
PTSD in many studies81-86 and elevations in CRF.82,87 Not all
studies, however, have found lower cortisol levels in
PTSD.88-91 Exposure to a traumatic reminder appears to be
associated with a potentiated release of cortisol in PTSD.92

The few studies of the effects of early stress on neurobi-
ology conducted in clinical populations of traumatized
children have generally been consistent with findings
from animal studies. Research in traumatized children

has been complicated by issues related to psychiatric
diagnosis and assessment of trauma.93 Some studies have
not specifically examined psychiatric diagnosis, while oth-
ers have focused on children with trauma and depression,
and others on children with trauma and PTSD. Sexually
abused girls (in which effects of specific psychiatric diag-
nosis were not examined) had normal baseline cortisol
and blunted ACTH response to CRF,94 while women with
childhood abuse-related PTSD had hypercortisolemia.95

Another study of traumatized children in which the diag-
nosis of PTSD was established showed increased levels
of cortisol measured in 24-hour urines.96 Emotionally
neglected children from a Romanian orphanage had ele-
vated cortisol levels over a diurnal period compared with
controls.97 Maltreated school-aged children with clinical-
level internalizing problems had elevated cortisol com-
pared with controls.98 Depressed preschool children
showed increased cortisol response to separation stress.99

Adult women with a history of childhood abuse showed
increased suppression of cortisol with low-dose (0.5 mg)
dexamethasone.100 Women with PTSD related to early
childhood sexual abuse showed decreased baseline cor-
tisol based on 24-hour diurnal assessments of plasma, and
exaggerated cortisol response to stressors (traumatic
stressors101 more than neutral cognitive stressors).102 We
also found that patients with PTSD had less of an inhi-
bition of memory function with synthetic cortisol (dex-
amethasone) than normal subjects.103 Adult women with
depression and a history of early childhood abuse had an
increased cortisol response to a stressful cognitive chal-
lenge relative to controls,104 and a blunted ACTH
response to CRF challenge.105 These findings show long-
term changes in stress responsive systems. Early in devel-
opment, stress is associated with increased cortisol and
norepinephrine responsiveness, whereas with adulthood,
resting cortisol may be normal or low, but there contin-
ues to be increased cortisol and norepinephrine respon-
siveness to stressors. In addition, early stress is associated
with alterations in hippocampal morphology which may
not manifest until adulthood, as well as increased amyg-
dala function and decreased medial prefrontal function.

Cognitive function and brain structure in
PTSD

Studies in PTSD are consistent with changes in cognition
and brain structure. Multiple studies have demonstrated
verbal declarative memory deficits in PTSD.53,106-108
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Patients with PTSD secondary to combat109-113 and child-
hood abuse114,115 were found to have deficits in verbal
declarative memory function based on neuropsycholog-
ical testing. Studies, using a variety of measures (includ-
ing the Wechsler Memory Scale, the visual and verbal
components of the Selective Reminding Test, the
Auditory Verbal Learning Test, Paired Associate Recall,
the California Verbal New Learning Test, and the
Rivermead Behavioral Memory Test), found specific
deficits in verbal declarative memory function, with a rel-
ative sparing of visual memory and IQ.109-113,115-124 These
studies have been conducted in both patients with PTSD
related to Vietnam combat,109-113,116,119-121,123 rape,117 the
Holocaust,124-126 adults with early childhood abuse,115 and
traumatized children.118 One study in adult rape survivors
showed that verbal declarative memory deficits are
specifically associated with PTSD, and are not a nonspe-
cific effect of trauma exposure.117 Another study of
women with early childhood sexual abuse in which some,
but not all, of the patients had PTSD, showed no differ-
ence between abused and nonabused women,127 while
another study was not able to show a difference between
Vietnam veterans with and without PTSD.128 Other types
of memory disturbances studied in PTSD include gaps in
memory for everyday events (dissociative amnesia),129

deficits in autobiographical memory,130 an attentional bias
for trauma-related material,131-140 and frontal lobe-related
impairments.141 These studies suggest that traumas such
as early abuse with associated PTSD result in deficits in
verbal declarative memory. It is not clear if cognitive
deficits in early abuse survivors are specific to PTSD and
are not related to the nonspecific effects of abuse.
These effects were specific to verbal (not visual) memory,
and were significant after controlling for IQ. Some of these
studies used neuropsychological tests of declarative mem-
ory, such as the Wechsler Memory Scale (WMS) and
Selective Reminding Test (SRT), that have been validated
as sensitive to loss of neurons in the CA3 region of the hip-
pocampus in epileptics who underwent hippocampal
resection.142,143 Vietnam veterans with PTSD were originally
shown by us to have 8% smaller right hippocampal vol-
ume based on magnetic resonance imaging (MRI) relative
to controls matched for a variety of factors such as alcohol
abuse and education (P<0.05); smaller volume was corre-
lated with deficits in verbal declarative memory function
as measured with the Wechsler Memory Scale.144 A second
study from our group showed a 12% reduction in left hip-
pocampal volume in 17 patients with childhood abuse-

related PTSD compared with 17 case-matched controls,
that was significant after controlling for confounding fac-
tors.145 Smaller hippocampal volume was shown to be spe-
cific to PTSD within the anxiety disorders, and was not
seen in panic disorder.146 Gurvits et al147 showed bilateral
hippocampal volume reductions in combat-related PTSD
compared with combat veterans without PTSD and nor-
mal controls. Combat severity was correlated with volume
reduction. Stein et al148 found a 5% reduction in left hip-
pocampal volume. Other studies in PTSD have found
smaller hippocampal volume and/or reductions in N-acetyl
aspartate (NAA), a marker of neuronal integrity.149-153

Studies in childhood154-156 and new-onset157,158 PTSD did not
find hippocampal volume reduction, although reduced
NAA (indicating loss of neuronal integrity) was found in
medial prefrontal cortex in childhood PTSD.159 In a recent
meta-analysis we pooled data from all of the published
studies and found smaller hippocampal volume for both
the left and the right sides, equally in adult men and
women with chronic PTSD, and no change in children.160

More recent studies of holocaust survivors with PTSD did
not find a reduction in hippocampal volume, although
PTSD patients who developed PTSD in response to an
initial trauma had smaller hippocampal volume compared
with those who developed PTSD after repeated trauma,
suggesting a possible vulnerability of smaller hippocampal
volume.161 Two independent studies have shown that
PTSD patients have deficits in hippocampal activation
while performing a verbal declarative memory task,149,162

although it is unclear if this is a deficit in activation or
higher hippocampal blood flow at baseline. Both hip-
pocampal atrophy and hippocampal-based memory
deficits reversed with treatment with the selective sero-
tonin reuptake inhibitor (SSRI) paroxetine, which has
been shown to promote neurogenesis (the growth of neu-
rons) in the hippocampus in preclinical studies.163 In addi-
tion, treatment with the anticonvulsant phenytoin led to
an improvement in PTSD symptoms164 and an increase in
right hippocampal and right cerebral volume.165 We
hypothesize that stress-induced hippocampal dysfunction
may mediate many of the symptoms of PTSD which are
related to memory dysregulation, including both explicit
memory deficits as well as fragmentation of memory in
abuse survivors. It is unclear at the current time whether
these changes are specific to PTSD, whether certain com-
mon environmental events (eg, stress) in different disor-
ders lead to similar brain changes, or whether common
genetic traits lead to similar outcomes.
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The meaning of findings related to deficits in memory
and the hippocampus in PTSD, and questions related to
the relative contribution of genetic and environmental
factors, has become an important topic in the field of
PTSD and stress research.There are three possible mod-
els, taking into account genetic or environmental factors,
which have been proposed to explain smaller hip-
pocampal volume in PTSD: Model A (Environment),
Model B (Environment and Genetic), and Model C
(Genetic).166-169 In Model C (Genetic), smaller hip-
pocampal volume represents a premorbid risk factor for
PTSD. In support of this model Pitman and colleagues170

have demonstrated that lower premilitary IQ is associ-
ated with combat-related PTSD, as well as finding a cor-
relation between PTSD symptoms and hippocampal vol-
ume in twin brothers.151 Model A (Environment) states
that stress leads to damage or inhibition of neurogene-
sis via hypercortisolemia, decreased BDNF, or increased
glutamate. Model B (Environment/Genetic) states that
a combination of environmental and genetic factors
leads to deficits in hippocampal function and structure.
Showing that an intervention like medication changes
hippocampal volume and cognition would provide sup-
port for at least a partial contribution of the environ-
ment to the outcomes of interest.
In addition to the hippocampus, other brain structures
have been implicated in a neural circuitry of stress,
including the amygdala and prefrontal cortex.The amyg-
dala is involved in memory for the emotional valence of
events, and plays a critical role in the acquisition of fear
responses. The medial prefrontal cortex includes the
anterior cingulate gyrus (Brodmann’s area [BA] 32) and
subcallosal gyrus (area 25) as well as orbitofrontal cor-
tex. Lesion studies demonstrated that the medial pre-
frontal cortex modulates emotional responsiveness
through inhibition of amygdala function. Conditioned
fear responses are extinguished following repeated expo-
sure to the conditioned stimulus in the absence of the
unconditioned (aversive, eg, electric shock) stimulus.This
inhibition appears to be mediated by medial prefrontal
cortical inhibition of amygdala responsiveness.
Animal studies also show that early stress is associated
with a decrease in branching of neurons in the medial pre-
frontal cortex.171 Rauch and colleagues found smaller vol-
ume of the anterior cingulate based on MRI measure-
ments in PTSD172; we have replicated these findings in
women with abuse and PTSD.160 An important question is
whether these effects are reversible with treatment.

Neural circuits in PTSD

Brain imaging studies have shown alterations in a circuit
including medial prefrontal cortex (including anterior
cingulate), hippocampus, and amygdala in PTSD. Many
of these studies have used different methods to trigger
PTSD symptoms (eg, using traumatic cues) and then look
at brain function. Stimulation of the noradrenergic sys-
tem with yohimbine resulted in a failure of activation in
dorsolateral prefrontal, temporal, parietal, and
orbitofrontal cortex, and decreased function in the hip-
pocampus.173 Exposure to traumatic reminders in the
form of traumatic slides and/or sounds or traumatic
scripts was associated with an increase in PTSD symp-
toms, decreased blood flow, and/or failure of activation
in the medial prefrontal cortex/anterior cingulate, includ-
ing Brodmann’s area 25, or subcallosal gyrus, area 32 and
24, as measured with positron emission tomography
(PET) or functional MRI (fMRI).174-183 Other findings in
studies of traumatic reminder exposure include
decreased function in hippocampus,176 visual association
cortex,176,180 parietal cortex,176,179,180,184 and inferior frontal
gyrus,176,179,180,184 and increased function in amygdala,181,184

posterior cingulate,174,176,177,180 and parahippocampal
gyrus.174,176,178 Shin and colleagues found a correlation
between increased amygdala function and decreased
medial prefrontal function with traumatic reminders,181

indicating a failure of inhibition of the amygdala by the
medial prefrontal cortex that could account for increased
PTSD symptoms with traumatic reminders. Other stud-
ies found increased amygdala and parahippocampal
function and decreased medial prefrontal function dur-
ing performance of an attention task,182 increased poste-
rior cingulate and parahippocampal gyrus and decreased
medial prefrontal and dorsolateral prefrontal function
during an emotional Stroop paradigm,185 and increased
amygdala function with exposure to masked fearful
faces.186 Retrieval of emotionally valenced words187 (eg
“rape-mutilate”) in women with PTSD from early abuse
resulted in decreases in blood flow in an extensive area
which included orbitofrontal cortex, anterior cingulate,
and medial prefrontal cortex (BA 25, 32, and 9), left hip-
pocampus, and fusiform gyrus/inferior temporal gyrus,
with increased activation in posterior cingulate, left infe-
rior parietal cortex, left middle frontal gyrus, and visual
association and motor cortex.188 Another study found a
failure of medial prefrontal cortical/anterior cingulate
activation, and decreased visual association and parietal
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cortex function, in women with abuse and PTSD relative
to women with abuse without PTSD, during performance
of the emotional Stroop task (ie, naming the color of a
word such as “rape”).189 We recently found increased
amygdala activation with classical fear conditioning
(pairing a shock and a visual stimulus), and decreased
medial prefrontal cortex function with extinction, in
abuse-related PTSD.190 The findings described above
point to a network of related regions mediating symp-
toms of PTSD, including medial prefrontal cortex, ante-
rior cingulate, hippocampus, amygdala, posterior cingu-
late, parietal, visual association, and dorsolateral
prefrontal cortex.191

Fewer brain imaging studies have been performed in
children with PTSD. Several studies have shown alter-
ations in electroencephalogram (EEG) measures of
brain activity in children with a variety of traumas who
were not selected for diagnosis compared with healthy
children. About half of the children in these studies had
a psychiatric diagnosis.Abnormalities were located in the
anterior frontal cortex and temporal lobe and were local-
ized to the left hemisphere.192,193 Two studies have found
reductions in brain volume in children with trauma and
PTSD symptoms.154,155 One group did not find reductions
in hippocampal volume, either at baseline or over a lon-
gitudinal period,154,156 while another group found an 8.5%
reduction in hippocampal volume that was not signifi-
cant after controlling for smaller brain volumes in the
PTSD group.155 One study used single-voxel proton mag-
netic resonance spectroscopy (proton MRS) to measure
relative concentration of NAA and creatinine (a marker
of neuronal viability) in the anterior cingulate of 11 chil-
dren with maltreatment-related PTSD and 11 controls.
The authors found a reduction in the ratio of NAA to
creatinine in PTSD relative to controls.159 Studies have
also found smaller size of the corpus callosum in children
with abuse and PTSD relative to controls.154 as well as
larger volume of the superior temporal gyrus.194 In a
study of abused children in whom diagnosis was not
specified, there was an increase in T2 relaxation time in
the cerebellar vermis, suggesting dysfunction in this brain
region.195 The reason for differences in findings between
adults and children are not clear; however, factors such
as chronicity of illness or interaction between trauma
and development may explain findings to date.
In summary, dysfunction of a circuit involving the medial
prefrontal cortex, dorsolateral prefrontal cortex, and pos-
sibly hippocampus and amygdala during exposure to

traumatic reminders may underlie symptoms of PTSD.
These studies have primarily assessed neural correlates
of traumatic remembrance, while little has been done in
the way of utilizing cognitive tasks as probes of specific
regions, such as memory tasks as probes of hippocampal
function.

MRI assessment of brain abnormalities in
PTSD and trauma spectrum disorders

Findings of smaller hippocampal volume appear to be
associated with a range of trauma related psychiatric dis-
orders, as long as there is the presence of psychological
trauma. We have used MRI to show smaller hippocam-
pal volume in PTSD,144,145,149,196 depression,197 depression
with early abuse,198 borderline personality disorder
(BPD) with early abuse,199 and Dissociative Identity
Disorder (DID) with early abuse.200 The greatest magni-
tude of difference was seen in the DID patients, who had
unusually severe early childhood sexual abuse histories.
We did not find changes in hippocampal volume in
patients with panic disorder without a history of abuse
(suggesting that findings are not generalized to other
anxiety disorders).201 We found smaller amygdala volume
in BPD with early abuse199 and increased amygdala vol-
ume in depression.197,202 Patients with depression had
smaller orbitofrontal cortex volume with no changes in
anterior cingulate (BA 32) or medial prefrontal cortex
(BA 25).203 More recently, we found smaller anterior cin-
gulate volume in women with abuse and PTSD relative
to controls.204

Neural circuits in women with 
abuse and PTSD

We have used PET to study neural circuits of trauma-
related disorders in women with early abuse and a vari-
ety of trauma spectrum mental disorders. Initially we
studied women with abuse and PTSD.54,205-208 We initially
measured brain activation with a paragraph-encoding
task in conjunction with PET O-15 water measurement
of brain blood flow. Women with abuse and PTSD
showed a failure of hippocampal activation during the
memory task relative to controls.149 Women with abuse
and PTSD in this study also had smaller hippocampal
volume measured with MRI relative to both women with
abuse without PTSD and nonabused non-PTSD women.
The failure of hippocampal activation was significant
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after controlling differences in hippocampal volume as
well as accuracy of encoding. In another study we mea-
sured neural correlates of exposure to a personalized
script of childhood sexual abuse.Women with abuse and
PTSD showed a failure of medial prefrontal and hip-
pocampal activation relative to abused women without
PTSD.176 Women with abuse and PTSD also showed a
failure of medial prefrontal and hippocampal function
during recall of paired word associates with traumatic-
emotional content (eg,“rape-mutilate”),188 and decreased
medial prefrontal function during an emotional Stroop
task with trauma-content words.209 Other studies showed
a failure of medial prefrontal activation in women with
BPD and early abuse during an abandonment script.210

Women with BPD and abuse had increased psy-
chophysiological responses to abandonment scripts rel-
ative to trauma scripts, while women with PTSD and
abuse had the opposite pattern,211 indicating differential
responding in those two disorders in spite of the com-
mon exposure to early abuse.
In another project we studied 19 physically healthy
women including women with a history of severe child-
hood sexual abuse and the diagnosis of current PTSD
(N=8) and women without childhood abuse or PTSD
(N=11).212 All subjects underwent PET measurement of
cerebral blood flow and psychophysiology measurement
of heart rate and skin conductance during habituation,
acquisition, and extinction conditions, on a single day,
with scanning during a control condition on another day
separated by 1 week from the active condition. Subjects
were randomly assigned to undergo either the active
condition or the control condition first (ie, active-control
or control-active). Subjects were told at the beginning of
the study that they would be exposed to electric shocks
and viewing images on a screen during collection of PET
and psychophysiology data. During habituation subjects
were exposed to a blue square on a screen (conditioned
stimulus [CS]), 4 seconds in duration, followed by 6 sec-
onds of a blank screen. CS exposure was repeated eight
times at regular intervals over 80 seconds in two separate
blocks separated by 8 minutes. One PET image of brain
blood flow was obtained starting from the beginning of
each of the blocks. During active fear acquisition expo-
sure to the blue square (CS) was paired with an electric
shock to the forearm (unconditioned stimulus [UCS]).
Subjects had 8 paired CS-UCS presentations at 10-sec-
ond intervals for each of two blocks.With extinction sub-
jects were again exposed to the blue squares (CS) with-

out shock (“active” extinction). On a second day subjects
went through the same procedure with electric shocks
delivered randomly when the blue square was not pre-
sent (unpaired CS-UCS) (an equal number as on day 1)
during scans 3 and 4, which served as a control for active
fear acquisition.
PTSD subjects had increased symptoms of anxiety, fear,
dissociation, distress, substance use disorders (SUDs),
and PTSD at all time points during both study days rel-
ative to non-PTSD. Acquisition of fear was associated
with increased skin conductance (SC) responses to CS
exposure during the active versus the control conditions
in all subjects. There was increased SC for PTSD during
the first CS-UCS presentation. Extinction of fear was
associated with increased skin conductance (SC)
responses to CS exposure during the active versus the
control conditions in all subjects. When PTSD and non-
PTSD subjects were examined separately, SC levels were
significantly elevated in non-PTSD subjects undergoing
extinction following the active compared with the con-
trol condition during session one.
PTSD subjects showed activation of the bilateral amyg-
dala during fear acquisition compared with the control
condition. Non-PTSD subjects showed an area of activa-
tion in the region of the left amygdala.When PTSD sub-
jects and control subjects were directly compared, PTSD
subjects showed greater activation of the left amygdala
during the fear conditioning condition (pairing of US and
CS) relative to the random shock control than healthy
women. Other areas that showed increased activation with
fear acquisition in PTSD included bilateral superior tem-
poral gyrus (BA 22), cerebellum, bilateral inferior frontal
gyrus (BA 44, 45), and posterior cingulate (BA 24). Fear
acquisition was associated with decreased function in
medial prefrontal cortex, visual association cortex, and
medial temporal cortex, inferior parietal lobule function,
and other areas. Extinction of fear responses was associ-
ated with decreased function in the orbitofrontal and
medial prefrontal cortex (including subcallosal gyrus, BA
25, and anterior cingulate BA 32), visual association cor-
tex, and other areas, in the PTSD subjects, but not in the
controls.Amygdala blood flow with fear acquisition was
negatively correlated with medial prefrontal blood flow
with fear extinction (increased blood flow in amygdala
correlated with decreased blood flow in medial prefrontal
cortex) in all subjects (r=-0.48; P<0.05). Increased amyg-
dala blood flow with fear acquisition was positively cor-
related with PTSD (r=0.45), anxiety (r=0.44) and disso-



Traumatic stress and the brain - Bremner Dialogues in Clinical Neuroscience - Vol 8 . No. 4 . 2006

453

ciative (r=0.80) symptom levels in PTSD (but not non-
PTSD) subjects.There was a negative correlation between
medial prefrontal blood flow during extinction and anxi-
ety as measured with the Panic Attack Symptom Scale
(PASS) during extinction in the PTSD group only, which
was significant after correction for multiple comparisons
(r=-0.90; P=0.006).190 This study was consistent with
increased amygdala function with fear acquisition, and
decreased medial prefrontal (anterior cingulate) function
during extinction in PTSD. This is consistent with the
model of an overactive amygdala and a failure of medial
prefrontal cortex to extinguish, or shut off, the amygdala,
when the acute threat is no longer present.

Treatment of PTSD

Intervening soon after the trauma is critical for long-term
outcomes, since with time traumatic memories become
indelible and resistant to treatment.213 Early treatments are
not necessarily effective. For instance, studies have shown
that Critical Incident Stress Debriefing (CISD) can be
associated with a worsening of outcome relative to no
treatment at all.214 Pharmacological treatment of chronic
PTSD has shown efficacy originally for imipramine,215

amitriptyline,216 and phenalzine,215 and later for bro-
faramine,217 paroxetine,218,219 and sertraline.220 Selective sero-
tonin reuptake inhibitors (SSRIs) and tianeptine are now
recommended as first-line treatment for PTSD.221-226

The utility of early treatment is also demonstrated by ani-
mal studies showing that pretreatment before stress with
antidepressants reduces chronic behavioral deficits
related to stress.227,228 Antidepressants, including both nor-
epinephrine and serotonin reuptake inhibitors, as well as
gabapentine and phenytoin, promote nerve growth (neu-
rogenesis) in the hippocampus, while stress inhibits neu-
rogenesis.63,64,66,69,71,75,229 This is important because hip-
pocampal neurogenesis has been shown to be required
for antidepressant response.74

Few studies have examined the effects of pharmacological
treatment on brain structure and function in patients with
trauma-related mental disorders. We studied a group of
patients with depression and found no effect of fluoxetine
on hippocampal volume, although there were increases in
memory function230 and hippocampal activation measured
with PET during a memory encoding task. Depressed
patients with a history of childhood trauma were excluded,
and we subsequently have found hippocampal volume
reductions at baseline in women with early abuse and

depression but not in women with depression without
early abuse;198 this suggests that the study design of exclud-
ing patients with early trauma may account for the nega-
tive result. Other studies in depression showed that smaller
hippocampal volume was a predictor of resistance to anti-
depressant treatment.231 Smaller orbitofrontal cortex vol-
ume is associated with depression; one study in geriatric
depression found smaller orbitofrontal cortex volume,
while length of antidepressant exposure was correlated
with larger orbitofrontal volume.232

Several studies have looked at functional brain imaging
response to antidepressants in depression. Single photon-
emission computed tomography (SPECT) blood flow
studies in depression showed that antidepressants
increased anterior cingulate, right putamen, and right thal-
amus function.233 SPECT Xenon-133 studies showed
reduced prefrontal function at baseline in depression, with
treatment responders showing reduced perfusion in pre-
frontal cortex compared with nonresponders after treat-
ment.234 In a fluorodeoxyglucose (FDG) PET study of
brain function patients with depression treated with flu-
oxetine who had a positive response to treatment had lim-
bic and striatal decreases (subgenual cingulate, hip-
pocampus, insula, and pallidum) and brain stem and dorsal
cortical increases (prefrontal, parietal, anterior, and pos-
terior cingulate) in function. Failed response was associ-
ated with a persistent 1-week pattern and absence of either
subgenual cingulate or prefrontal changes.235 Sertraline
resulted in an increase in middle frontal gyrus activity in
depression measured with PET FDG, as well as increased
function in right parietal lobe and visual association cor-
tex.236 Successful paroxetine therapy of depression was
associated with increased glucose metabolism measured
with PET in dorsolateral, ventrolateral, and medial aspects
of the prefrontal cortex, parietal cortex, and dorsal ante-
rior cingulate.Areas of decreased metabolism were noted
in both anterior and posterior insular regions (left) as well
as right hippocampal and parahippocampal regions.237 In
another PET FDG study, at baseline, subjects with depres-
sion had higher normalized metabolism than controls in
the prefrontal cortex (and caudate and thalamus), and
lower metabolism in the temporal lobe. With treatment
with paroxetine, subjects with depression had metabolic
changes in the direction of normalization in these
regions.238 A PET FDG study of patients with depression
and controls showed that at baseline, the mean metabo-
lism was increased in the left and right lateral orbital cor-
tex/ventrolateral prefrontal cortex (PFC), left amygdala,



and posterior cingulate cortex, and decreased in the sub-
genual anterior cingulate cortex (ACC) and dorsal
medial/dorsal anterolateral PFC in depressives relative to
controls. Following treatment with antidepressants, metab-
olism significantly decreased in the left amygdala and left
subgenual ACC.The metabolic reduction in the amygdala
and right subgenual ACC appeared largely limited to
those subjects who both responded to treatment and
remained well at 6 months’ follow-up.239 Another study
showed that antidepressant treatment of depression
resulted in a decrease in amygdala activation with emo-
tional faces as measured with fMRI.240 In summary, stud-
ies show changes in limbic and prefrontal cortical regions
with successful antidepressant treatment of depression.
Fewer studies have looked at the effects of pharmaco-
logical treatment on the brain in anxiety disorders. One
PET FDG study showed that caudate function decreased
with treatment of obsessive compulsive disorder with
antidepressants.241 Paroxetine resulted in a decrease in
glutamate/glutamine measured with magnetic resonance
spectroscopy (MRS) in children with obsessive-compul-
sive disorder (OCD).242 Patients with PTSD were shown
to have an increase in hippocampal volume and memory
function with paroxetine,163 and increased right hip-
pocampal and right cerebral volume with phenytoin.165

No published studies have looked at the effects of phar-

macological treatment on brain function in PTSD, or on
sensitive markers of brain chemistry like NAA.
Brain biomarkers like NAA represent an objective
marker of neural plasticity.To date psychiatry has relied
on subjective reports as the gold standard. However, this
is limited by self-reporting and the subjective interpreta-
tions of symptoms and response to treatment. Brain mark-
ers of antidepressant response may provide a comple-
mentary approach to assessing response to treatment, as
well as providing insight into the mechanisms of treatment
response. Our group is trying to look at mechanisms in the
brain underlying treatment response in PTSD.

Effects of pharmacotherapy on 
brain function and structure in PTSD

We have begun to assess the effects of pharmacotherapy
on brain structure and function in PTSD.243 We recently
assessed the effects of phenytoin on brain structure and
function. Studies in animals show that phenytoin, which
is used in the treatment of epilepsy and is known to mod-
ulate glutamatergic function, blocks the effects of stress
on the hippocampus.67 We studied nine patients with
PTSD in an open-label function before and after treat-
ment with phenytoin. Phenytoin resulted in a significant
improvement in PTSD symptoms.164 Phenytoin also
resulted in increases in both right hippocampal volume
and right hemisphere volume.165 These findings indicate
that phenytoin has an effects on PTSD symptoms as well
as brain structure in PTSD patients.
We have assessed the effects of open-label paroxetine on
memory and the hippocampus in PTSD. Male and female
patients with symptoms of PTSD were medication-free
for at least 4 weeks before participation in the study.
Twenty-eight patients were found to be eligible and
started the medication phase. Of the total patient sample
five patients did not finish due to noncompliance; 23
patients completed the study.
Before patients started the medication phase, neuropsy-
chological tests were administered, including the
Wechsler Adult Intelligence Scale – Revised, WAIS-R
(arithmetic, vocabulary, picture arrangement, and block
design test), two subtests of the Wechsler Memory Scale-
Revised, WMS-R, including logical memory (free recall
of two story narratives, which represents verbal memory)
and figural memory (which represents visual memory
and involved reproduction of designs after a 6-second
presentation); and the verbal and visual components of
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Figure 2. Neural correlates of fear conditioning in women with abuse and
PTSD. There was increased amygdala activation with fear acqui-
sition using a classical conditioning paradigm relative to non-
PTSD abused women. PTSD, post-traumatic stress disorder

Orbitofrontal cortex

Increased blood flow with fear acquisition
versus control in abuse-related PTSD

Superior temporal gyrus

Yellow areas represent areas of relatively greater increase in
blood flow with paired vs unpaired US-CS in PTSD woman
alone, z>3.09, P<0.001

Left amygdala



the Selective Reminding Test, SRT.
Paroxetine was prescribed in the first visit after the pre-treat-
ment assessments.All patients started open-label with a dose
of 10 mg daily and were titrated up to 20 mg in 4 days.
Paroxetine treatment resulted in a mean 54% reduction
in PTSD symptoms as measured with mean changes from
baseline on the CAPS total score (P<0.005) among study
completers. Improvement was equally strong on all symp-
tom cluster scores (Re-experiencing,Avoidance/Numbing,
Hyperarousal). Treatment also resulted in significant
improvements in verbal declarative memory as measured
with the WMS-R paragraph recall for delayed recall
(P<0.005) and percent retention (80.2 to 91.1; P=0.003),
but not immediate recall. Improvements were significant
on all subscales of the Verbal Component of the SRT;
including long-term recall and delayed recall.
Repeated measures ANOVA with side as the repeated
measure showed a main effect for treatment related to a
4.6% increase in mean hippocampal volume (1857.3 mm3

[SD 225.6] to 1906.2 mm3, [SD 243.2]) with treatment
(F=8.775 df=1.36;P=0.005). Increased hippocampal volume
was seen for both left (5.6%) (1807.6 mm3 [SD 255.5] to
1909.3 mm3 [SD 236.9]) and right (3.7%) (1906.9 mm3 [SD
195.8] to 1976.7 mm3 (SD 249.6]) hippocampus.There was
no change in whole brain volume with treatment. Increase
in hippocampal volume was significant after adding whole
brain volume before and after treatment to the model.

Discussion

Traumatic stress has a broad range of effects on brain
function and structure, as well as on neuropsychologi-
cal components of memory. Brain areas implicated in
the stress response include the amygdala, hippocampus,
and prefrontal cortex. Neurochemical systems, includ-
ing cortisol and norepinephrine, play a critical role in
the stress response. These brain areas play an important
role in the stress response. They also play a critical role
in memory, highlighting the important interplay
between memory and the traumatic stress response.
Preclinical studies show that stress affects these brain
areas. Furthermore, antidepressants have effects on the
hippocampus that counteract the effects of stress. In
fact, promotion of nerve growth (neurogenesis) in the
hippocampus may be central to the efficacy of the anti-
depressants. Studies in patients with PTSD show alter-
ations in brain areas implicated in animal studies,
including the amygdala, hippocampus, and prefrontal
cortex, as well as in neurochemical stress response sys-
tems, including cortisol and norepinephrine. Treatments
that are efficacious for PTSD show a promotion of neu-
rogenesis in animal studies, as well as promotion of
memory and increased hippocampal volume in PTSD.
Future studies are needed to assess neural mechanisms
in treatment response in PTSD. ❏
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Estrés traumático: efectos en la cerebro

El estrés traumático surte efectos muy diversos
sobre la función y la estructura cerebrales. Las
regiones cerebrales implicadas en la respuesta al
estrés son la amígdala (núcleo amigdalino), el hipo-
campo y la corteza prefrontal. Los sistemas neuro-
químicos, como el cortisol y la noradrenalina,
desempeñan una misión crítica en la respuesta al
estrés. Estas regiones cerebrales influyen sobre la
respuesta al estrés y sobre la memoria, lo que
subraya la interrelación entre la memoria y la res-
puesta al estrés traumático. Los antidepresivos
actúan sobre el hipocampo y contrarrestan el efecto
del estrés. Los estudios sobre pacientes con tras-
torno por estrés postraumático (TEPT) revelan alte-
raciones en las regiones cerebrales implicadas en los
estudios con animales como la amígdala, el hipo-
campo y la corteza prefrontal, así como en los sis-
temas neuroquímicos de respuesta al estrés, entre
ellos el cortisol y la noradrenalina. Los tratamientos
con eficacia frente al TEPT promueven la neurogé-
nesis en los estudios con animales y también
aumentan la memoria, y el volumen hipocámpico
en el TEPT. Se requieren nuevos estudios para eva-
luar los mecanismos neurales de la respuesta tera-
péutica en el TEPT.

Effets du stress traumatique sur le cerveau

Le stress traumatique exerce une grande variété
d’effets sur la fonction et la structure cérébrales.
Les aires cérébrales impliquées dans la réponse au
stress comprennent l’amygdale, l’hippocampe et le
cortex préfrontal. Les systèmes neurochimiques,
incluant le cortisol et la norépinéphrine, jouent un
rôle critique dans la réponse au stress. Ces aires
cérébrales influent sur la mémoire et sur la réponse
au stress traumatique, soulignant ainsi les interac-
tions existant entre les deux. Les effets des antidé-
presseurs sur l’hippocampe compensent les effets
du stress. Les études chez les patients atteints de
trouble stress post-traumatique (ESPT) montrent
des modifications des aires cérébrales impliquées
au cours des études animales, telles l’amygdale,
l’hippocampe et le cortex préfrontal, ainsi que des
modifications des systèmes neurochimiques de
réponse au stress comme le cortisol et la noradré-
naline. Les traitements efficaces dans l’ESPT entraî-
nent une activation de la neurogenèse chez l’ani-
mal de même qu’une amélioration de la mémoire
et une augmentation du volume de l’hippocampe
dans l’ESPT. Il faudra d’autres études pour évaluer
les mécanismes neuronaux dans la réponse théra-
peutique au cours de l’ESPT.
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